Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis.

نویسندگان

  • Evgeny Edovitsky
  • Michael Elkin
  • Eyal Zcharia
  • Tamar Peretz
  • Israel Vlodavsky
چکیده

BACKGROUND Heparanase is an endoglycosidase that degrades heparan sulfate, the main polysaccharide constituent of the extracellular matrix and basement membrane. Expression of the heparanase gene is associated with the invasive, angiogenic, and metastatic potential of diverse malignant tumors and cell lines. We used gene-silencing strategies to evaluate the role of heparanase in malignancy and to explore the therapeutic potential of its specific targeting. METHODS We designed plasmid vectors to express hammerhead ribozymes or small interfering RNAs (siRNAs) directed against the human or mouse heparanase mRNAs. Human breast carcinoma (MDA-MB-435) and mouse lymphoma (Eb) and melanoma (B16-BL6) tumor cell lines, which have naturally high levels of endogenous heparanase or have been genetically engineered to overexpress heparanase, were transfected with anti-heparanase ribozyme or siRNA. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and measurements of enzymatic activity were used to confirm the efficient silencing of heparanase gene expression. Cells transfected with the anti-heparanase ribozyme and siRNA vectors were tested for invasiveness in vitro and metastatic dissemination in animal models of experimental and spontaneous metastasis. RESULTS Compared with cells transfected with control constructs, cells transfected with the anti-heparanase ribozyme or siRNA vectors had profoundly reduced invasion and adhesion in vitro, regardless of cell type, and expressed less heparanase. In vivo, tumors produced by cells transfected with the anti-heparanase ribozyme and siRNA vectors were less vascularized and less metastatic than tumors produced by cells transfected with the control vectors. Mice injected with cells transfected with the anti-heparanase ribozyme and siRNA vectors lived longer than mice injected with control cells. CONCLUSIONS The association of reduced levels of heparanase and altered tumorigenic properties in cells with anti-heparanase ribozyme- or siRNA-mediated gene-silencing vectors suggests that heparanase is important in cancer progression. Heparanase gene silencing has potential use as a target for anticancer drug development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis.

The present study emphasizes the importance of cell surface expression and secretion of heparanase (endo-beta-D-glucuronidase) in tumor angiogenesis and metastasis. For this purpose, nonmetastatic Eb mouse lymphoma cells were transfected with the predominantly intracellular human heparanase or with a readily secreted chimeric construct composed of the human enzyme and the chicken heparanase sig...

متن کامل

Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis.

Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic r...

متن کامل

Impact of Heparanase and the Tumor Microenvironment on Cancer Metastasis and Angiogenesis: Basic Aspects and Clinical Applications

Heparanase is an endo-β-D-glucuronidase that cleaves heparan sulfate (HS) side chains at a limited number of sites, activity that is strongly implicated with cell invasion associated with cancer metastasis, a consequence of structural modification that loosens the extracellular matrix barrier. Heparanase activity is also implicated in neovascularization, inflammation, and autoimmunity, involvin...

متن کامل

Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression.

Heparanase is an endoglycosidase that specifically cleaves heparan sulfate side chains, a class of glycosaminoglycans abundantly present in the extracellular matrix and on the cell surface. Heparanase activity is strongly implicated in tumor metastasis attributed to remodeling of the subepithelial and subendothelial basement membranes, resulting in dissemination of metastatic cancer cells. More...

متن کامل

Small RNAs Targeting Transcription Start Site Induce Heparanase Silencing through Interference with Transcription Initiation in Human Cancer Cells

Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against -9/+10 bp (siH3), but not -174/-155 bp (siH1) or -134/-115 bp (siH2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 96 16  شماره 

صفحات  -

تاریخ انتشار 2004